Newton–Okounkov bodies: an approach of function field arithmetic
نویسندگان
چکیده
منابع مشابه
Multizeta in function field arithmetic
This is a brief report on recent work of the author (some joint with Greg Anderson) and his student on multizeta values for function fields. This includes definitions, proofs and conjectures on the relations, period interpretation in terms of mixed CarlitzTate t-motives and related motivic aspects. We also verify Taelman’s recent conjectures in special cases. 2010 Mathematics Subject Classifica...
متن کاملRecent Developments in Function Field Arithmetic
Z = {integers} Q = {rational numbers} R = {real numbers} C = {complex numbers} Z+ = { positive integers} q = a power of a prime p Fq = A Finite field with q elements A = Fq[t] A+ = {monics in A} K = Fq(t) K∞ = Fq((1/t)) = completion of K at ∞ C∞ = completion of algebraic closure of K∞ [n] = tq n − t dn = ∏n−1 i=0 (t qn − tqi) `n = ∏n i=1(t− tq i ) deg = function assigning to a ∈ A its degree in...
متن کاملThe convolution inverse of an arithmetic function
Good, but does an inverse g of f have to exist? A necessary condition is that f(1) 6= 0. Indeed, if g is the inverse of f , then 1 = I(1) = (f ∗ g)(1) = f(1)g(1). We now show that this necessary condition is also sufficient. We assume that f(1) 6= 0 and we try and solve for g. What this means is that we are solving for infinitely many unknowns: g(1), g(2), . . . . From the above, we see that th...
متن کاملthe aesthetic dimension of howard barkers art: a frankfurtian approach to scenes from an execution and no end of blame
رابطه ی میانِ هنر و شرایطِ اجتماعیِ زایش آن همواره در طولِ تاریخ دغدغه ی ذهنی و دل مشغولیِ اساسیِ منتقدان و نیز هنرمندان بوده است. از آنجا که هنر در قفس آهنیِ زندگیِ اجتماعی محبوس است، گسترش وابستگیِ آن با نهاد ها و اصولِ اجتماعی پیرامون، صرفِ نظر از هم سو بودن و یا غیرِ هم سو بودنِ آن نهاد ها، امری اجتناب ناپذیر به نظر می رسد. با این وجود پدیدار گشتنِ چنین مباحثِ حائز اهمییتی در میان منتقدین، با ظهورِ مکتب ما...
An arithmetic function arising from Carmichael’s conjecture
Let φ denote Euler’s totient function. A century-old conjecture of Carmichael asserts that for every n, the equation φ(n) = φ(m) has a solution m 6= n. This suggests defining F (n) as the number of solutions m to the equation φ(n) = φ(m). (So Carmichael’s conjecture asserts that F (n) ≥ 2 always.) Results on F are scattered throughout the literature. For example, Sierpiński conjectured, and For...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal de Théorie des Nombres de Bordeaux
سال: 2018
ISSN: 1246-7405,2118-8572
DOI: 10.5802/jtnb.1051